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in this report we discuss adaptive phase compensation for the
effects of turbulence and thermal blooming. Closed-loop
systems employing both outgoing-wavc and return-wave control
algorithms nre- considered, although we have obtained from
quantitative e-stimates, of systom performance only for the
return wave* type of syst-,m. On tho basis of results obtai neIfrom a cornj iiter simulation of such systems, wo conclude that
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20. ABSTRACT (continued)

adaptive optical systems employing a return-wave control
policy will yield only limited compensation for the effects
of cw thermal blooming unless the target has glints that ýre

usgnificahntly smaller thAn the diffraction-limited width oi
the beam. We explain this in terms of an isoplanatic effect,
in which the phase informa,.-ion returned from the 4lint is
cgarbled by v:Artue of Its fin.ite extent. In contrat tc the
v'w thermal. )Loomint rsults, we find that return-w:.ive sys-
tems art mu,'n less svrsiti-,,o to glint size for tuirb\ilence aoid
nultipulse t.iermal blcoming rompenk.tion (70 to 10ý of free-
space peak irradiance restord typiV ally in thr cane of
turbulence c!ompense.tion an, o. fa-ý,t.o:" of two tfr. tht-e.• inr(roase
in target I )r.d ,.•ice .in the .;,ie C f i'ui.ti oul.;e ther'.td: bl.onM--
it qc) *Analyt ica, anrd (vmpu-I-,n gj ¶11 t;ion rePult1s havi al'mcp . L.eri obtat nEvd f7r~ the dcpenI-'oi;c6I -i:T'f .v.roY kit ou the numt~or

of mir~ror iinftuetors .
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SUMMARY

In this report we discuss adaptive phase compensation

for the effects of turoulence and thermal blooming. Closed-
loop systems employing boti outgoing-wave and return-wave
control algorithms are conisidered, although we have obtained
"uantitative estimates of system performance only for the

return wave-type of system,. On the basis of results obtained
from a computer simulation of such systems, we conclude that

adaptive optical systems eploying a return-wave control

policy will yield only limi ;ed compensiation fctr the effects
of cw thermal blooming unla,.% the target hao 9..Nnts that T.,xe

sign ificant1l si1rm.•aler than thi ",liffraction-i1i~mI'-ed i..dcth
of the bea)n, . • ,•,:, ., ii., ) tormim of an ii;4i•pJI •i,:,.,.
effec L, i . \wb i:. I :,.ne Fhata ir fo ,,Ti";io;n ret'-.irnecý Jrrib ' .i nt,
-is jar.)led .Y, 't , t i t:; o (.-'l.f.t' c . xtoint, I I I o ni: Xu . \ t"., th-a

cw ti irmaJ hI con'lnq rcv:wj,.,ts , wo f.,.rt that L'etuAn- ~ve ~'t
are much less iinensitivo to glint ti.•,t .:!or turbuler.'e end
multipulsoc thermal bloc-ming compensation (70 to 90% of free- .

space peak Irradiance restored typically in the case of
turbulence compensation and a factor of two to three increase
in target irradiance in the case of multipulse thermal
blooming). Analytical and computer simulation results have
also been obtained for t.ne dependence of mirror fit on the
number of mirror actuators.
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I.• INTRODUCTION

The principal objectivw of most high energy laser

systems is to achieve the maxiLmum possible irradiance at a,

diatant target. Under ideal conditions the maxirmum irradiarce
is deternlined by free-space diffraction effects. In practice,

however, •hiu, ideal state is seldom realized. We mUSL cont(end

arld tinally with wave distortions introduced by the laiser

"device, by'the optical train and by mediuim inhomogeneilius

.in theF.ath b•itween the transmitter aperture and the target.

In eac,c ase thedisto'tion is caused largily by path length

'.rroLs that. intUroduýo phase aberrations. tn this report,

we considet thk.,,ýmprovement in beam quality 3ttainable by

-adaptive opticnl- eystams that lntrodqkae a compenhating phase

, , r•'ttbQbAi3r, whic.|1, tends to cancujl the' eror, ilntroducrd by

thv phas'. aberrations. The compensatin'g 0h~ase distribution
;-,/ A siA''0 to bo generated 2Y d c.orxre,?t?.r .i ro v .oe'atfvd in f

"t r.e ,•p$S ýa. tr' ln; Er.g , a s ̂ em4:.t+. rr •l .o- riab.le mirror

. I , i ~rJ jutit boh 'ore th l t( ',ei.r.oit. i•4"ti~err e, we i e0

a., : , I' er.. .e, prLm#.ri1,y w lih c-l¢,s,.,..loo4 ... ri• that obt~ain

t~hl) j4 AW).to ;has a 111fq1ýmvtiun viat t~ha vA rri~y i2et~urrad from~
S~~~th. t £:ie,

c.4h41. t,'-rncipc2l objective o! t.heano Stti1.ieS has boon to
determi~e tiae rffecthiveuiess of alosed-loop adoptive optical

systems in ••,•oipensating for .the effects of turbulence and

tharmal blooming. The effects of device distortilcn and

optical. train errors wore not conmidered but could easily

be included in the formialism d0veloped here if the nature of
these errors was spec),fied (eg., the spatial and temporal

spectrum of ti:e erv'ors).

To obtain quantitativ eahtimates of the degree of

compensation achievable with closed-loop adaptive optical
systems, we have developed a computer medel of such systems.

The model incl'des a servo system simulator, a corrector

•< 1
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mirror siLioi1.ator, a propagation simulator an'i a'target
simulatcZ. The propa;ation simulator atLiizes a ,ropagation
algorithm that accurately models the optical. distortions

introduced by atmospheric turbulence and thormal bloowing.
Before proceeding to the discuision of the simulation

and the resmlts obtainevd therefrom, we discuss in Section 11
some of th,: fundamentals of adaptive ph3se compensation for
the e-ffets of medium inhomogeneitiei. This is followed in
SeCtLon III by a discussion of the details of the computiur

himulation that has been developed on thio! contract. Results
obtained from the computer simulation and from analysis are
tha.r givn I.n Section IV. The conclusions that we have
reached based on this worR and our recommendations for

additioial work or, the compute;r simalatton of closed-loop

Wadaptivu optical aystems are discussed .•n Section V.

2
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11. ,FUNDAMENTALS OF ADAFPTIVE C;OMPEINSATION FOR
// MEDIUM INHUOMUULIIE

In this section we dtscass the basic principles ar.d

fundamental limitations -.)f :'*o~road classes of adaptiva optical
techniques tfor compensiting c ,ji' med.Wm inhomogeneities caused by

thermal blooming and turhul.,dnce,. The two classes of techniques j
to be considered aye (i) return-waive algorithms in which the

phase corrections ara determined from direvt measurements of

the returned .vArld (e.g., thie phase conjugate technique) or

by a maximiation of some functional of the irradiance
distrib.it.ur obtained by imaging the target (eg., maximization

of the energy through a pinhole for a point glint target or

maximizing the -'sharpness" of an imaye of an extended target)

and (2) outgoin'g-wave multidither algorithms in which the phase

corrections arr. determined by maximizing the integrated

irr.,diance o" the field ',oflected I!rom the teirgvt and inter-

cý!ptrvd b'i a d( tec.tror lnoated in the vicinity oF tQhw ttranswnt.ttor

(4.(It. the s i ,',•,. l m tn tidithe r to(:hniquvo us•W d iii t!hi .1 R-

. xt. r , i 'r'..,,t.a\ ' COh :,ys'.y3m ccn st:rucvt: , by' P!1 I
uomp ,.,a 1 l¢ L m }ci I t,='2C:c ,in • a : . *C 'o , ... U I Uv1•) tw , I t h at :• t .- Ac' -,t •.1v v

system rcspoi'ds JnstanI ant .,)usly t:': chanqea ii. 1: io stwd:. of

the mpdlum cauvocl by thermal blooming and t.urbulencn,. in
effect, this assumption linearizes the propagation phenomenon

since we then do not have to be concerned with the local
effect (in time) of the phase correction on the medium. This

idealization should apply as long as the response time of the

adaptive system is short compared to the time constants for

the thermal blooming.

For each class of technique we are interested in deter-

mining the effect of thu phase corrections on the field at

the target. This field '.an be derived, in general, from a

scalar function u which satisfies the relaZJon

u/(x") dx. u (x') G(,"',x') (2.1)

3
- I.2rlIz~iztIA2~n.~r.-n~z~tII~lk~fl. - kan~~alr~arnhtA IIV2.S1)~



where u isi the field at the transmitter aperture and G is

the Green's function for the inhomogeneous medium; i.e.,

G(exO) is a s.3alar function from which we can derive the
field at x" excited by a point .ource located at x1. It
follows from Eq. (2.1) that the field at a point x caused by the

reflection of the transmitted wave from a point target at x1
is

u R(1) G (Xx) dx. u W) G (2.2)

Likewise, the field at x caused by the refleation of the
transmitted wave from an extended target..-having tht complex
reflectivity function p(e') is

-- 
-

U R ( _ W d e• p ( _ •1 G l •x e ' ) d~x * u (X " ) (2 .3,w )1 ',3

Equations (2.2) and (2.3) are the flundamental rtqlations upv'n whi,.h

wea sh&1l base tho discussion of the two clar es t': adaptIv &

i:ompern cation techni gurs,

-. havc t . propt ty thath thay.,

phase c.rm.e.Ptior4 aprilled to the tranumi-ttod wave is the
conjuqtite oV the phase of the field returned from the target..

Thig ir true not only for the explicit phase conjugate technique

but also for the case in which a functional of the irradiance
distribution obtained by imaging the target is maximized.
Muller and Buffington have proved this for an Incoherent imaging
system that maximizes the "sharpness" of an image of an extended

target.1 It is also easily proved for a coherent system that
maximizes the energy from a point glint target through a
pinhole in the image plane of a receiving aperture. In this

case the field at the receiving aperture is proportional to
G(x,xf) which can be expressed in the form

4



G(x,.') A(xQ,_L') exp i(xx) Go(x,,') (2.4)

where G is the free space Green's function and A and , are

the amplitude and phase variations caused by the medium

inhomogeneities. After the introduction of a compensating

phase distribution ¢c(x) in the aperture plane, the field in

the image plane of a lens used to image the point >c" is

uimage (X-i) fdx A(x,_W. expti~r) +

exp ik (2.5)

where f is the d3istance from the aperture plane to the image

plane of +he lens. Hence the'irradiance through a pinhole

located at xj =0 is

6 1,. x X axp[ + 12
R',image~ 0  

nJ~Axx x~&x•)+~x)[;, -(2 .6)

"and we note that since A is positive the maximum value of

I is attained under C -p, i.e., when the compensating
image

phawo distribution is the conjugate of the atmospheric phase
Jist'ortions.

Another i mportant general property of return-wave

algcrithms is that they are based on the fact that Green's

func.ion G(x_,_-) satisfies the reciprocity relation (see

Appendix A Fot a'dimcussion of reciprocity)

G(<,x') = G(Y',x) (2.7)

which moans that the field observed at a point x from a source

at a point x' is the same as thc, field )bserved at x' from

a source at .x. Equation (2.7) appliegeven thouqgh the interveining

space between x and x' is inhomogeneous. The only restricticn

is that we assume that Lhe propagation is linear, which it

is under the assumption we have !nade.



Let us now consider the effect of introducing as a
phase correction the conjugate of the phase of the fielJd
returned from the target. For a point target we note from
Eq. (2.2) that the returned field is proportional to G(x,•C)
and thus that the phase correction applied by a return-wave
system is -4(x,x_•). The field at the target is then given by

U(x') = u (X') e i )()\ G(xq,xi)

m- dxA u lX') (2.8)

where we have used Eq. (2.4) to express G in terms of A,O and

the free apace Green's function GO and have used the reciprocity
relation given inEq, (2.7) to sliminate the phase terms 4(x*,•")

and 0(e i.o.,

-4(j ,x ) + o(xx') 0. (2.9)

The result inEq. (2,8) indicates that return-wave algorithms
yield good compensation in the case of point glint targets
an long as the amplitude factor A does not vary significantly
across the transmitting aperture. Appreciable variation in A
across the aperture will lead to an effective apodization of
the aperture and will tend to increase the sidelobe level

and the beamwidth of the transmitted energy.
For an extended target the return field is given in

Eq. (2.3), which we repeat here for convenience

uR(x) dxA' P(xA') G(x,x-) dx us8(x) G(xI,x').
f (2.3)

If the target reflectiv±ty function is simply a collection of

zero width glints located over an extended region, it can be
shown that the previous point target analysis applies and we
conclude that a return-wave system will yield good compensation
for such targets as long as the amplitude factor A does not

6



vary too much. more realistically, however, the target glints

have finite extent and the previous analysis does not apply.
For example, consider the case where there is a single glint of

finite extent. Moreover, let us assume that the range of p(x")
is small compared to that of the incident field from the trans-

mitter. In this case the retuin field can be approximated by

uX (x) , d• )(xx) (,X dx u (x) G(,5  (2.10)

where x- is the point where the reflectivity function r'UC)

has its maximum value. Hence, a return-wave algorithm will

apply as a correction the conjugate of the phase of the factor

/ dx" ix') G(xx) (.11)

which is a weighted average of the Green's function over the

domain of the reflectivity function ,(x"'). This phase correction

policy will yield good compensation only if the phase of G(x,xe)

does not vary appreciably over the range of i'. Otherwise, the
conjugate phase is garbled by the interference between the

returns from the difi-erent parts of the domain of i,(x"). The

regative of the phase of the factor in Eq. (2,11) will then

not exactly cancel the phase 4,(xpi) of G(x",x') and the
0 -*0 -

compensation will be degraded. An example of this type of

problem is provided by a similar situation in adaptive imaging

through inhomogeneous media. It is well known that good

compensated imaging can be obtained only if the object lies
within an isoplanatic region, which has the property that the

phase distortion q,(x,x") introduced on a point source field

radiated from a point x" on the object to a point x in the

receiving aperture is nearly the same for points x ' within

this region.

The importance of the isoplanatic problem in return-

wave adaptive compensation systems will depend largely on the

7



nature of the target reflectivity function and on the source
of the medium inhomogeneity. In our computer simulations of

phase conjugate compensation for the effects of thermal
blooming we have assumed that the target glints extend over an
area approximately equal to the diffraction-limited size of

the transmitted beam. Under these conditions, we have found
that the compensation achieved tends to be disappointingly
small and we attribute this to the above discussed isoplanatic

problem. Numerical problems associated with the attendant

wide-angle scattering have prevented us thus far from simulating
glints that are significantly smaller than the diffraction-
limited spot.

For turbulence compensation problems we can readily

estimate the size of the isoplanatic region. Its linear extent

0imo is roughly equal tn the distance between two points on
the target at which the mean square difference in the phase of

a point source field radiated from a point x in the transmitter
aperture is unity. Assuming Kolmogorov turbulence, we obtain
the relation

D is0 - (1. 1 Y C N f)-3/ (2.12)

where C2 is the index structure constant, k is the wavenumberN
211/X and f is the distance to the target. Tn the computer

simulations of phase conjugate compensation for the effects
of turbulence, we have generally obtained good correction

with glints that extend over a diffraction-limited spot area.

This is consistent with the fact that the isoplanatic region
associated with the turbulent inhomogeneities was larger
than the diffraction-limited spot in these runs. For instance,

the diameter of the diffraction-limited spot obtained with
a 70 cm, 10.6 lim laser beam focussed at a range of 2 km is

approximately 3 cm (fX/D), whereas the diameter of the

isoplanatic region obtained from Eq. (2.12) is in the range
6 D 28 cm for the range of index structure constant

?8



values used in the simulations (5 x 10- 1 6 m-2/3 2

6 x 10" 5 cm 2 /3).

2.2 Outgoing-Wave Multidither Algorithms

Outgoing-ways multidither algorithms adjust the phase of
the transmitted wave to maximize the irradiance of the field
reflected from the target. To accomplish this, the phase of
the transmitted field is dithered in a distinct set of
spatial-temporal modes. The resulting modulations on the
irradiance of the field reflected from the target are then
detected and sent to a servo system that tends to set the
corrector mirror actuators so as to drive the modulations to
zero. In doing so, the servo system sets the actuators in
the positions where the derivatives of the detected signal

with respect to the phase correction are zero, which is the
condition for a maximum (the fact that it is a maximum and
not a minimum can be determined by the phase of the signal).

The detector current in an outgoing-wave multidither

system is proportional to integral I of the irradiance of the
field uR reflected from the target. For a point target, we
obtain from Eq. (2.2)

S= c f dx IG(x,x")lI 2  (2.13)

where c is the irradiance of the transmitted field at the

target

c If dx' u (x,) G(x,x")1 2  (2.14)

Note that the integral in Eq. (2. 13) does not depend on tae
transmitter field u.. Hence, a maximization of I with respect

to the transmitter phase yields maximum irradiance at the

target, as desired.

9



For extended targets the reflected field is given by

Eq. (2.13). As in the case of return-wave algorithms, the above

point target analysis applies if the target reflectivity

function is simply a collection of zero width glints located
over an extended region (with the difference that the ieecjeiver

detector must now alos be extended in order to achieve the
desired maximization of the irradiance of the target). As

an example of an extended target, we shall consider the case

discussed in the return-wave algorithm discussion of Section

2.11 viz., a single glint of finite extent for which the range
of the reflectivity function p(_x") is small compared to that
of the incident field from the transmitter. In this ce-se the

return field can be expressed in the for:m given in Eq. (10)
and the corresponding expression for th'n integrated irradiance

returned from the target becomes

2S1 c f dx If dx" ,(_) G(x,_? )I1 (2.15)

where c is again the 3rradiance of the transmitted field at the

target. Although the field returned from the extended glint

differs from that returned from the point glint, we note from

Eq.(2.15) that a maximization of I again leads to a maximization

of the irradiance at tho target. As in the point target case,
this occurs because the integral over x in Eq. (2.15) does not

depend on the transmitter field ua.

The above analysis indicates that, in contrast to

return-wave algorithms, outgoing-wave multidither algorithms

are relatively inmensitive to target glint size. Of course,
this is true only up to a point. If the range of the glint

reflectivity function ,(xi) is large compared to that of the

field incident from the tranamitter, the return field is
approximately given by

uR• ,(x f d G(xx') f dx u (x') G(x",x'), (2.1(0

10
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and the integrated irradiance returned from the target

becomes

I IP(x-j 2 dx f x tO~~r) fdx u G (xi (,C') 2

(2.1?)

Hence, in this case an outgoing-wave multidither syntem

maximizes a complicated functional of the transmitter irradi-

ance at the target instead of the transmitter irradiance

itself and we should not expect to achieve good compensation

(this behavior has been observed experimentally with the

KRL 18-element multidither COAT system).
In summary, the results of this section and those of

Section 2.1 indicate that: (1) both return-wave and outgoing-
wave (multidither) phase ilmnu'!,•n aigorithms should yield
good compensation for medium inhomogeneities for point glint

targetsl (2) return-wave algorithms are much more sensitive
to glint size than outgoing-wave algorithms, especially in
the case of thermal blooming compensationj and (3) when the
size of the target glints significantly exceeds the size of
the diffraction-liMiLed fucal spot of the transmitted field
at the tazget, we do not expect the outgoing-wave multidither
algorithm to work.

11



T I I ADAPTIVE OP1TICAI, SY I'E•M SIMI1I,ATION

J. 1 k.nizat ion Aild Approach

The essential elemunti of the adaptive optics computer

simulation arc! indicated in Fig. 3.1. The simulation contains

computer routines that model the operation of an adaptive

optical System consisting of a servo system and a corrector

mirror. The effect of thc: atmosphere on the resulting laser

beam propagation is modele;d by a time-dependent propagation

code that treats the effects of both turbulence and thermal

blooming. The simulation models a cloted-loop adaptive system

in which the control information is provided by the detection

of a return-wave reflected from the target. Propagation on the

return path is modeled by a time-dependent linear propagation

code, which includes the effects of the inhomogeneities

caused by turbulence and the absorptive heating introduced

by the high-pow.r transmitted wave. 'The nature and current

status of thu various parts of the simulati.on are discussed
in Sections 3.2 to 3.5.

As ilnd.catud al-.iuv, wu- usu a t ime-dependent: propagation

code tD model the laser propagation on tho outgoing and return

paths. This differs from the approach taken by Herrmann and

Brad l1v of I-inr'HIn I .n _)dratcr2 , h c a : c.. dcŽ in

their phase compensation studice. 2  It. is admittecdly truc- that

the us- of a t. lue--d*dopendent. propa(lation code greatly i ncreases

thC C 'UMpl uxi ty dle1 cost of t he1 "l Cul t i n but: we have felt

co ,ln iuj(. .1d to us( t.his approtwh f.or two re~asons. First, the

t ime-dcpenldent. approach i e closer to the physics of the stri-

ation that wez. aru, trying to simulate since we are primarily

interrsted ina adapti Iv e optical systNoms that rc-spond in a time

short cosiparoed to th tLimo it takes the atmobphere to crianqe.

Such adaptivr- systems perform an essentially instantannous deter-

rnlnation of the required phase! front. Moreover, the det.,l-minat, ion

Preceding page blank
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Fig. 3.1. Adaptive optical system simulation flow diagram.
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r1
is continuously updated as the medium changes, rather that, to

be put in and held fixed until a steady state is reached, as
is implicitly assumed whan a cw propagation code is used.

The distinction between the time-dependent and cw approaches

is especially important for the simulation of adaptive systems

that employ return-wave algorithms. Whereas it can be argued
that a cw code in conjunction with a maximization routine
closely models the behavior of an adaptive optical system
employing an outgoing-wave muiltidither algorithm, it does not
appear possible to model return-wave systems with thn cw approach

since such systems do not explicitly maximize the irradiance on

the target. Instead, as discussedin Section 2.1, they continu-

ously set the phase of the transmitted wave equal to the conjugate
of the phase of the field returned from the target. There does
not appear to be any reason to expect that the final state

reached by such a system can be obtained from a cw calculation

or a sequence of such calculations.

The other reason for the use of a time-dependent propa-

gation code in our studies is the desire to follow the time

development of the correction process, especially in the case
of adaptive systems employing outgoing-wave multidither control

algorithms. As discussed in Section 2.2, an outgoing-wave

multidither control system attempts to maximize the irradiance

at the target at each instant. We wish to know if this

instantaneous maximum control policy leads to a global maximum

in the thermal blooming cotrection problem or, instead, yields

a secondary maximum. This can be determined by comparing the

maximum obtained with the time-dependent and the cw codes

because the cw approach yields the global maximum.

The time-dependent propagation algorithm used in the

simulation is basically a multi-pulse code in which the laser

energy is propagated in a series of short pulses. The pulse

length is assumed short enough that no heating occurs during

the pulse. Furthermore, it is assumed that the heating

caused by a pulse has reached a steady state by the time the

15



next pulse arrives. The term !,teady state is used here in the

sense that all density gradients traveling at the sound velocity

are assumed to have left the region occupied by the laser beam

by the time the next pulse arrives. The only gradients present

are those that are convected with the local crosswind velocity.

Each pulse "sees" the medium created by the steady state heating

of all previous pulses but is unaffected by its own heating.

This model allows us to simulate either pulsed or cw propagation,

depending on the time between pulses relative to the time it

takes an air parcel to traverse the beam. CW propagation

conditions are simulated by allowing significant overlap between

the regions heatcd by successive pulses.
The time sequence of events in the simulation is shown

An Fig. 3.2. First, a high-power pulse of laser energy is

propagated to the target and the resulting change in the

density of the air in the region occupied by the beam is

calculated, taking into account the convective effect of the

local crosswind velocity. It is assumed that the adaptive

phase compensation is applied just prior to the firing of the

next high-power laser pulse. Moreover, we are presently

assuming that the adaptive optical system has infinite band-

width so that it is Able to determine and apply the phase

correction instantaneously without any delay or time-averaging

effects. The information required to determine the phase

correction is obtained by transmitting a low-power reference

pulse to the target and reflecting the same from the target.

This reference pulse propagates through the medium that will

be seen by the next high-power pulse and thus provides the

necessary phase correction information. This process is then

repeated for each subsequent high-power pulse.

With the exception of some runs in which the effect

of the atmosphere was represented by a single phase screen

in front of the transmitter, all of the data that have obtained

to this date apply to the simulation of adaptive systems

16
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Fig. 3.2. Time sequence of events in multipulse adaptive
optics simulation:

(1) No heatinq during a pulse (tp , acoustic;

(2) Steady state heating for t-t - tdelayI

(3) Adaptive optics correction applied in the
interval tdelay t-ti tR.
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utilizing a return-wave control algorithm, i.e., systems that

correct by inserting the conjugate of the phase of the wave

returned from the target. The reason for this concentration

on the phase conjugate simulation is simply that such simu-
lations are significantly easier to implement and less costly

to run than outgoing-wave simulations. The simulation of
a return-wave system requires simply that we transmit a

single low-power reference wave to the target and a single

low-power reflected wave back to the transmitter aperture.
The phase correction is then equated to the conjugate of the

phase of the reflected field. In contrast, all accurate
multidither simulation requires the sending and receiving of

many low-power reference pulses for each high-power pulse.

We must sample the modulations of the integrated irradiance

of the target returns at a rate set by the highest dither

frequency. For example, it was found in our earlier multi-
dither servo system simulations that a sampling time increment

of 5 insec is required for an 18-channel system having an

upper dither frequency of 32 kHz and an overall convergence

time of I Ms. 3 Hence, approximately 200 samples/convorlence
time were required in those simulations. It was practical

to take 200 samples/convergence time in the earlier work

because of the simplicity of the propagation model that was
used. In the present case, however, the propagation model

is quite complicated and relatively costly to run and thus

it is clearly not practical to do an equivalent simulation.

At the outset of this contract we had planned to
circumvent the multidither simulation problem as follows:

(i) propagate a low-power reference pulse to the targett

(2) propagate the associated low-power pulse reflected from

the target back to the transmitter aperture; (3) use the
calculated return wave to estimate the Green's function of

the medium; (4) dither the phase of the reference pulse and

calculate the resulting variations in the irradiance received

18



from the target, utilizing the Green's function information
obtained previously (i.e., we did not plan to use the full
propagation simulation every dither cycle, but rather intended

to do this only once per high-power pulse)l and (5) process

the variations in received irradiance in a multidither servo
simulator to determine the mirror actuator settings. During

the course of the work on this contract, it became apparent,
however, that such a simulation is an empty exercise becAuse
it does not simulate the desired behavior of an actual outgoing-

wave multidither system in a thermal blooming situatiin. The
problem is that the assumption that the Green's fun..tion can
be determined from the return field reflected from the target
is not valid in the thermal blooming problem unless the
target is extremely small, in fact, unless it is nearly a
point target. But it can be shown from the analysis in

Section II that outgoing-wave multidither and return-wave
adaptive optical systems both put in the conjugate phase when
the target is a point target. Therefore, the simplified
approach to multidither outlined abuve either yiulds results

equivalent to those obtained with a rcturn-.,ave algorithm
(point glint) or yields results that are patently incorrect

(extended glint).
We now think that the best way to simulate outgoing

multidither adaptive systems is to use a function maximization
routine in con:'unction with the time-dependent propagation
code. This is a modified version of the approach used by

Herrmann and Bradley in their phase compensation studies.
They have used a function max.imization routine in conjunction

with a cw propagation code. We recommend the use of a time-

dependent code because it will allow us to determine directly
whether or not the outgoing-wave multidither algorithm yields
a tr•ily global maximum and not just a secondary maximum.

19
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3.2 Control System Simulation

As discussed in Gection 3.1, we have primarily used a

phavu conjugate control policy in the computer studios of
thermal blooming and turbulence compensation performed on
this contract. Moreover, the phase conjugate control algorithm

that we have used is particularly simple in that we have
simply uquated the phase of the transmitted wave to the conjugate
of the phase of the wave returned from the target on a mesh
point by mash point basis. We have not taken into account
the effect of the finite area of the phase detector and
detector noise in these studies because we wished to emtablish
an upper limit on the amount of correction that is achievable
with a phase conjugate control. algorithm and to avoid the
problem of determining whether the particular detector configu-
ration used is the optimum choice. For example, there is the
question of how large to make the detectors. Should we use a
collection of small point detectors or should we use larger
detectors that yield spatially averaged phase estimators? The
refinements in our presenot approach necessary to account for

these effects are discussed below.
The phase detector cen be represented as a finite

aperture heterodyne detector, which performs a coherent
summation of the return-wave field over the detector aperture,
followed by a device that determines the phase of the detector
output. The detector output is

idt r dx uR(x) uLO(x) + inoise (3.1)
aperture

where r is a constant, uR is the field returned from the
target, ULO is the local oscillator field, and inoise is a
shot noise current. Note that even in the absence of noise,
a finite detector does not yiel.d an exact measure of the
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phase of the return-wave field but rather gives an average
value determined by the integral in Eq. (3.1). The phase of
the detector output is

A N sin N]
tan., S". K - 1

ýdet -tan- N0 3S (3.2)

where

8 fx u (x (x) As exp(i *S) (3.3)

aperture

inoise AN exp(i CN) (3.4)

For shot noise-limited detection, tht noise current in Eq.
(3.4) isa gaussian random process and thus can be simulated

by a gaussian random number generator. The mean square

magnitude of these numbers is dt.ormined by the detector
signal-to-noise ratio S/N

A - A2 (S/N)"l (3.5)
N S

For each return wave a finite set of phase samples
can be determined from the relations given in Eqs. (3.2) through
(3.5). Theconjugazteof thise samples can then be used as
inputs to the mirror simulator discussed in Section 3.3. The

resulting phase-corrected wave is then transmitted to the
target and a new return wave calculated. For point targets,
the necessary phase corrrjction is established by a single

calculation of this type. Our experience indicates that this

transmit-return wave calculation must be iterated four to five
times in order to achieve convergence on a complex target,

i.e., a target having more than one glint.

21
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With regard to the question of how to simulate outgoing-

wave multidither control algorithms we recommend, as mentioned

in Section 3.1, that a function maximization routine be used

in conjunction with a time-dependent propagation code (see

Fig. 3.3 . The basis of this approach is the fact that an

outgoing-wave multidither algorithm is a maximization process.
It attempts to maximize the integrated irradiance of the field
returned from the target. Hence the detector in Fig, 3.3 is

represented in the simuldtion by an integration of the return

irradiance over an area equal to that of the receiver being

modeled. The maximization can be done with respect to any

desired set of parameters that describe the state of the

corrector mirror, e.g., the actuator position, the coefficients

of a set of orthogonal polynomial such as Zernike functions, or

the coefficients of some predicted set of correction functions

(such as parabolic refocus adjustment plus a variable percentage

of the phase distortion introduced in the first propagation

step as implemented by Bradley and Herrmann).

3,3 Mirror Simulation

We have developed simulavions of both segmented and

dei'ormable mirrors. The segmented mirror simulation is a

relatively trivial exercise in that it simply consists in

dividing the mirror mesh into a set of square-shaped zones

within an outer circular boundary (see Fig. 3.4). The phase

within each zone is assumed to be constant; i.e., the mirror

consists of a set of flat segments.
In the deformable mirror simulation, it is assumed

that the mirror is driven by actuators equi-spaced on a square

array of mesh points. The fundamental problem is to find a

relatively simple, low-cost method for calculating the mirror

profile resulting from an arbitrary set of actuator displace-

ments. It is not practical tn use a sophisticated simulation
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Fig. 3.4. Segmented circular
mirror configuration.
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such as the NASTRAN code in these studies. Instead, we have
simplified the problem by assuming that thin plate theory in
applicable, and that linear muperposition holds. It is also
assumed that the connection to the mirror from each actuator
is affected at a single point (i.e., the actuators have zero
width at the point of contact with the mirror) and that pure
thrust without torque is transmitted. With these assumptions,

the problem reduces to finding the mirror profile resulting
when one actuator is raised unit height with all of the
surrounding actuators held fixed at zero height. This is
referred to as the unit profile. The total mirror profile at
any instant is calculated by summing a set of unit profiles,
each centered at one of the actuators and each weighted by
the height of Its associated actuator.

The detailed form of the unit profile depends on the

actuator configuration. We have calculated unit profiles for
deformable mirrors having 37, 57, and 97 actuators. In each
case the unit profile is calculated as follows. First, we
consider the mirror profile that results from the displacement

of a single actuator at the center of a thin plate which is
constrained only at a circular edge whose radius is large
compared with the extent of the region occupied by the mirror.
No other actuator constraints are assumed at this stage. We
determine the profile from the following relation obtained

from thin plate theory4

2 _ 2 2displacement - 5(a 2 - r2) - 4r kn (3.6)r

where a is the distance to the edge of the plate and r is
the distance from the central actuator to the point at which

the displacement is measured.

For the profile in Eq. (3.6) the height at adjacent

actuator positions is not zero when the central actuator is
displaced. To determine the unit profile, we sum the

25
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contributions to the total height at a given actuator position

from that actuator and all surrounding actuators. The height
of each of the unconstrained actuator displacements is taken

as an unknown coefficient in a set of simultaneous equations

which are solved on the basis that the total height should be

unity at the central actuator and zero at the surrounding

actuators. Having determined the unconstrained actuator

heights required to give the desired constraint that the net

displacement is zero at each of the actuators except for the

central one, where it is unity, we use Eq. (3.6) to determine

the unit profile at all intervening mesh points.
If the profile is used in the form determined above,

no additional adjustments need be made. For convenience,
however, we have truncated these profiles along square

boundaries. Hence, we slightly adjust the resulting profile

to ensure that it satisfies the condition that if all actuators

are displaced at unit height, the mirror surface is also at

unit height everywhere. The unit profile obtained for a

57-actuator mirror is given in Fig. 3.5. The unit profiles

obtained for the 37- and 97-actuators mirrors have the same

general characteristics, viz., a monotdnic decrease to zero

at the nearest neighbor actuators and neqative valuesi in the

space betwecn theme neighboring actuators ana the next set

of actuators.

The actuator confiyurations utilized in the simulations

are shown in Figs. 3.6, 3.7 and 3.8. Note that extra actuators

are placed around the periphery of the mirror. These actu-

ators are used to simulate a mirror having an unconstrained

edge. They tend to smooth the transition between the region

occupied by the actuators and that which is beyond.
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Fig. 3.6. Actuator configuration used in
37 -actuator deformable mirror
simulation (37 actuators, 20
dummies, 13 mesh points per
actuator.
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97-actuator deformable mirror
simulation (97 actuators, 32
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3.4 Proajaition Simulation

3.4.1 Formulation - The field of a high-power laser

beam propagating through a turbulent atmosphere can be

derived from a scalar functiun u(x) that satisfies the

equation

i 2 " + VT u + k _ (3.7)

TTwhere VT2 is the transverse Laplacian • 2/ 2 + 2/ 2, k is

the wavenumber 27i/A, and n(x,t) is the refractive index of
the medium. In writing Eq. (3.7), we have assumed that the
nominal direction of propaqation is along the z axis of an
x,y,z coordinate system. At laser wavelengths the function

u(x,t) varies much more rapidly transverse to the direction
of propagation than it does along the diroection of propa-

gation. This enables us to make the paraxial approximation

wherein the term on the right side of Eq. (3.7) is neglected.

We then have

1 2k ý u + ,2 u + k2 (n 2 (x,t)-l) u * 0 (2•.8)
ýz YT n (,t -

For given initial data, i.e., values of the field at
points in the aperture of the laser transmitter (or on the

target), the propagation simulator must generate the corres-
pondiny field values at the tarqet (or in the receiving
aperture) such that Eq. (3.8) is satisfied. To do this, we

divide the medium into slabs defined by planes tn which z is
constant. In going from one slab to the next, we write u(x)

in the form

u(x,t) ex P (xit) (x,t) (3.9)

where (x,t) is a phase function associated with the medium
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inhomogeneities between z.-Az/2 and z+Az/2

_l(xt) z.Az2 dz (n 2 (x,yz,,t)-1) (3.10)I•(x~l) I= .- Azl2

The complex amplitude •(x) then satisfiee the equation

[2 2k (I + exp(-r) v4 exp(,) i = 0 (3.11)

with the initial condition

uw(x,y,zt) - u(x,yz,t) (3.1.2)

Physically, these equations approximate the propagation in

the inhomogeneous medium by a two-step process at each z

increment. First, we propagate the field u(x,t) at z-Az/2
to z+.\z/2, asuuming that the intervening space is homogeneous.

The effect of the inhomogeneities between z-Az/2 and z+Az/2

is then accounted for by multiplying this solution by the

phase factor exp(I').
3.4.2 Convergming inate Transformation - To reduce

the size of the mesh required to solve Eq. (3.11) numerically,

we use converyintl coordinates defined by the transformatior

/ N(z) 
(3.13)

Y/:o 
(3.14)'2 4 z)7 3.4

2 1/
N(z) 2 + . ) (3.15)

-k 2

-. - t ,n " i- . (3 . 1 6 )
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1I/2 f
= 1 f (3.17)

kp2

where p0 is a characteristic dimension of the laser beanr at

the transmitter (e.g., the a-folding radius of a gaussian

beam), f is the distance to the focus, and a is a constant

determined by the requirement that the solution be confined

within the boundaries of the mesh at the focal plane. In the

absence of thermal blooming and turbulence, the choice c1 = 1

yields a coordinate system that converges at a rate determined

by the free-space diffraction of a gaussian beam havinq an

a-folding radius p o With turbulence and thermal blooming

effects present, we typically choose (I in the range 1.5 to
3.0, depending on the amount of additional spreading induced

by these effects.
When written in terms of the converging coordinate

variables defined above, Eqs. (3.9) and (3.11) for the complex
amplitude are replaced by the relations

w(x,y,zt) - ^(•,•) exp(f) v(Ott) (3.18)

W ( (11/2 N(z)) 1 exp 11 + ý ) tan,] (3.19)

- x() + -~Jexp(Fi) v -0 (3.21)

" 0 ' I

where Az is the increment in & in going from z-AZ/2 to z+\z/2.

The initial condition for v is

v( z,&,t = (x,y,z' t)/- l _. A) (3.20)
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To solve Eq. (3.21) we utilize the fact that for

sufficiently small values of A& (i.e., Az) the effect of the
exponential factors exp(±i) in this equation is small. Hence,

we solve the simpler equation obtained when these factors

are equated to unity

[ (2 + al v- 0 (3.23)

3.4.3 Method of Solution - We use a fast Foýurier

transform technique to solve Eq. (3.23). The basis of this

approach is the fact that the solution of Eq. (3.23) can be

expressee' in the form of a discrete Fourier series

N-1 N-1

11 V)mn m C
m-0 n-0

where the Fourier coefficients Vzn are determined from the

initial data and Eq. (3.23) as follows. The initial values

of Vmn are obtained by taking the discrete Fourier transform

of the initial values of v(L,&i,t) over a mesh of points

;I [(,-(N/2)] Are, t.2 " [J-(N/2)] Ar, (9.,j O,'l,...,N-l)

N-i N-IVmn(ýi't) " (-]m( , -<() I• A?-
nN 2 1 2 t): - Ai

V=0 j=0

expl- -- (mi + nj)j (3.25)

The P, dependence of V is then determined by ,ubstitutingmn
Eq. (3.24) in Eq. (3.23), which yields
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U~ ii
mn + (p2 + q 0 (3.26)

M n Vmn

from which it follows that

12+q 2

V(,t) * V nn(&i,t) exp (3.27)

Finally, it can be shown that in order for the discrete
Fourier series representation of v given in Eq. (3.24) to be
real when v is real, the coefficients pm and qn must have the
form

PM M (3.28)

n "N-• (n - (3.29)

Hence, for discrete points ;l (Z " N/2)At, •2 = ( N/2)A4
( ,J -0 , , los N-l)

N-1 N-i

"- (-l)i+ > > (-I) m+n Vmn( i't)
m-0 n1-0

+x (n N)) + 1 27 (m + in)] (3.30exp i i + •

where 2.- 2 2 / 2 Note that v is simply (-1)1+j tirn.u

the discrete Fourier transform of (- 1 )m+n V mn(,t).
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The effect of the medium and the factor expt(-i/2(C. 12

+22)\\:,] introduced by the coordinate transformation is taken

into account at each i step in the calculation by multiplying
the value of v obtained in the previous step b. the quantity

exp(1') defined in Eq. (3.20), i.e., the initial value inserted
in Eq. (3.25) is exp(l') times the value of v determined from
the previous steps.

3.4.4 Effect of Absorption - The absorptive contri-

bution to U is calculated from the relations

_ ~ ~iky 0/z+A/2.z/2 */'

/Z (ý0 )abs

-M 1

1'abs (x ,y'z't) iky z2,,/ d' ab(331

(A(-11 ca exp(-cTz) Epulse
2,o sa 2 1vrl r3 'r PýM

SP 0 a N (Z) m-0 (3.32)

with

(M - m) (v0 + wz) t
= __. (3.33)

where • is the ratio of the specific heat of air at constant

pressurc to that at constant volume (h = 1.4), 1 is the mole-

cular Absorption coefficient of the air, tT is the total
extinction coefficient, vy is the transverse wind velocity

assumed to be in the x direction, P0 is the ambient air pressure,
',i is the slew rate (slewing assumed also to be in the x direc-

tion), Epulse Is the energy per pulse, and y is the molecular

polarizability of air.

in writing Eq. (3.32) we have assumed that the laser

enerqly is delivered i.n a series of pulses for which the pulse
length is short enough that no heating occurs during a pulse.
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Moreover, we have assumed that the interval between pulses

is long enough that the heating caused by the mth pulse is

fully developed by the time that the m + it pulse arrives

(i.e., transient density changes traveling at the velocity of

sound are assumed to have departed from the region occupied

by the beam).
3.4.5 Effect of Turbulence -- The contribution to

from turbulence is calculated by a Fourier transform technique

which yields a two-dimensional distribution of gaussian

random numbers having correlation properties consistent with

those associated with the phase variations caused by Kolmogorov

turbulence. In particulare, we represont 1 turb by the Fourier-

Stieltjes integral

turb - i d(K) exp(i K .x) (3.34)

The increments d[' satisfy the relations

'd '(K)> - 0 (3,35;

<d1 x1dý*(K 2) 0 K, K

= dK1  i41 '(K) (K K 2  (3.36)

where ý-;(K) is the spatial spectrum of the phase variations and

K in the spatial wavenumber. Note that, with this representa-

tion, Iturb satisfies the Weiner-Khintchin theorem

(turb~l 1 turb( 2) !di.K xpi ~'21
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as required by any valid representation of a homogeneous

random process.

We have utilized a modified von Karman spectrum for •

.207 C2 k 2 Az K-11/3

oIKN (3.38)

where C2 is the index structure constant, Az is the z incre-

ment, and K0 is 2v divided by the outer scale of turbulence

o0. The Fourier integral in Eq. (3.34) is evaluated by the

following discrete Fourier transform approximation of this

integral

11 turb (mn)

N-1 N-1 (l)+J

i(_l)m+n N , - a±j exp i L (mZ + nj)I

=0 Nn I \ \\L\2
[1 +\J-~ + i~/\~/

(3.39)

where the a are complex gaussian random numbers (we assume

that I' turb is gaussian) with zero mean and the following

correction properties

a = aN.,N-j (3.40)

K •,a I (i t ) V migLm.•(a .. U nit I ,1 (3.411)
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KRea I (a .) Real(it j. .)) - 0 X '÷2.,j 'j and Z ,'N-4 ,j 'N-j (3.42)

(Imag (a• 1  "mag(a,j.)) - 0 X '0 A,j'4j and k,'ON- X,j t/N-j (3.43)

Real(a ) Real (a, j .) -,j J o '-N-,J'-N- (3.44)

K1muS(a ) Imas(aL.li) - 1 Z'-,aJ'-J (3.45)

K lmag(a ) Imag(a. , .)) - -1 ,'.N-P.,J ""N-j (3.46)

The quantity a is the constant

( 5/31/2 L°

ao- .070 (k CN Az L 0 MAX (3.47)

where Ax is the distance between mesh points.
Evidence that the random phase screens, generated in

the manner described above, have the desired statistical
properties is provided by the phase structure function results

shown in Fig. 3.9. The theoretical value for the phase
structure function for the spectrum . given in Eq. (3.38) is

D ~(r) - ((ýx1 0 -2 )

- 2.61 k2 C 2 Az o/3 6 - (K r/2)5 /6  5 6 (K0r)
N I. 0n r

(3.48)

r - x2i (3.49)
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which in the limit of an infinite outer scale reduces to

D (r) - 2.91 k2 C 2 Az r 5 / 3  L U (3.50)

The dashed curved line and the straight line in Fig. 3.9 are
phase structure function results calculated from Eq.. (3.48)
and (3.50). The somewhat wicgly solid line is the phase
structure function result obtained by averaging over 100

realizations of phase screen samples generated by a fast
Fourier transform evaluation of the relation given in Eq.

(3.39). In these runs we used a 64 x 64 mesh with 1.106 cm
between mesh points and an oLter scale length of two meters.

3.4.6 Medium Storage Upnd Ua - At each f step
in the propagation calculation we store the absorptive contri-
bution to f (although this is done in large core memory on the

CDC 7600 computer that we are using, it could also be done by
writing on the disk). The effect of a transverse wind and

of slewing is taken into account in this storage process by
first performing a mesh translation on the new and old data.
The data are moved a distance equal to the distance that the
wind and slewing moves the heated air between pulses. Hence,

the stored values of r abs are those that will be seen by the

next pulse.
Rather than calculate iturb anew for each pulse in a

multipulse sequence, we calculate a single set of phase
screens at the outset and store them frc later use. The

effect of the wind and slewing is taken into account by trans-

lating these phase screens as described abuve.
The overall logic and sequence of events in the propa-

gation simulation, including the medium storage and updaie

processes described above, are indicated in the flow diagram
given in Fig. 3.10.
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3.5 Target Simulation

The essence of the closed-loop adaptive optical control

concept is that the reflection characteristics of typical

targets are such that highlights or glints will exist and

that the return from these regions can be used as a reference
to sense the changes in the transmitter phase distribution

required to correct for atmospheric phase distortions. Hence,
we approximate the target by a set of glints. Each glint is

represented as a gaussian reflectivity distribution, i.e.,

M

Reflectivity Distribution ( (3

( a m(p (3.52)

xml

where m is the number of glints and am, x m, xm are the strength,

position and width of the mth glint.

The initial data for the return wave are determined by

multiplying the incident laser field by the target reflec-

tivity function given in Eq. (3.51).
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IV. SIMULATION RESULTS

4.1 Mirror Simulation Results

The major portion of the effort on the mirror simulation

has been devuted to the problem of determining the number of

mirror actuators required to yield a good fit to the phase

surfaces that must be generated to compensate for the effects

of atmospheric turbulence. In addition to the computer simu-

lation results, we have obtained anilytical astimates of the

effects of turbulence on peak irradiance at a target, both

with and without adaptive compensation. The analytical results

obtained for the effect of turbulence on peak irradiance without

adaptive compensation are discussed in Section 4.1.1. Analy-

tical and computer simulation results obtained from the effect
of adaptive compensation with a mirror having a finite number

of degrees of freedom (i.e., actuators) are discussed in

Section 4.1.2.
We also have done some work on the dependence of mirror

fit on the number of mirror actuators for the case of phase

conjugate compensation for the effects of thermal blooming.

These results are discussed in Section 4.1.3.

4.1.1 Effect of Turbulence on Peak Irradiance - An
interpretation of theoretical results derived for the ensemble-

averaged irradiance distribution of a laser beam propagated

through atmospheric turbulence 5 indicates that the effect of

the turbulence can be accounted for by introducing an appro-

priately chosen random phase screen in front of the trans-

mitter aperture. Utilizing this result, we can write the

Strehl ratio (SR) associated with the turbulence in the form

(recall that the Strehl ratio due to a wave distortion is

defined as the ratio of the peak irradlance in the presence of

the distortion to the peak irradiance of the undistorted benm)

Preceding page blank
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M .0 2 (4. 1)
no turb /dx" ]d2" i(.') %(jd)

where u0 is the aperture field distribution and D (x'=x") is

the phase structure function of the r.%ndom phase screen. For

Kolmogorov turbulence with an infinite outer scale, the appro-

priate phase structure function is

D (x.-x-") - 2.91 k 2 ix-x_"5/3/ dz" C 2 W' (4.2)

where C 2 is the index structure constant, k is the wavenumbcrN
2,/\ and z is the distance to the target,

For a uniformly illuminated circular aperture of
diameter d, the Strehl ratio obtained from Eq. (4.1) is

S R / dr cog tl(.) 0 r,2)/2 exp-I r.5/3) (4.3)
.0

with

• i.456 k 2 d5/3/' (•.)5/3 C2cz.)

= k dz' (4.4)

where r0 is the phase cohoronce length clefined by Fried

L5/3
6 -88 r. - 2.91 k' dz' C (zN ) (4.6)

Numerical reoults for the Strehl ratio defined in Eq. (4.3)

are shown in Fig. 4.1 (curve labeled "no adaptive optica")

for values of ( up to 15. For larger values of ýi, the follow-

ing asymptotic result applies

SR ,, 4.407 B"6/5 .5692 if-, 9/5 15 (4.7)
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Note that for sufficiently large ii, the Strehl ratio is jiven

by the first term in Eq. (4. 7) and from Eq. (4.5) th.s c'mn be

written simply as the ratio (r 0 /d)2, which is inversely related
to the number of phase coherence areas contained in the trans-

mitter apsrture.

The effect of having an adaptive tilt control syntem
that dynamically removes the tilt component of the turbulence

distortion can be accounted for by replacing the structure

function D, In Eq. (4.1) by Dl - <(a. (x'-x-)) 2 -where a is

a least squares estimate of the instantaneous tilt vector.

Utilizing the results for a derived by Fried,6 we can write
the following expression for the Strehl ratio obtained for a

uniformly illuminated circular aperture having adaptive tilt

control

(SR)XrI1 d. rir c.oslt( R w ith tilt. " " " d , . o - ( - , 1]/

control o0

exp B (1 5/3 1l-/3) (4.8)

Numerica] results for the Strehl ratio defined in Sq. (4.8)

are shown in Fig. 4.1 (curve labeled "with tilt control").

To assist in the use of Fig. 4.1 we have plotted i, as a function

N C z in Fig. 4.2. It appears that tilt control alone is a

reasonably effective compensation technique for values of i,

less than 20. At 10.6 ijm this condition will be satisfied

in many scenarios, whereas at 3.8 irm it will seldom be

satisfied (e.g., we note from Fig. 4.2 that i( is less than 20

for .7 m optics at 10.6 i'm for all values of C 2 z 2 x 10"I0
1l/3 2I N0"15

r which, for a 4 km path, requires that CN z 2.5 x 1

- 2/3)
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4.1.2 Adaptive Compensation for Turbulence Effects-

Effect of Having a Finite Number of Actuators - It was noted
in the previous section that the effect of atmospheric turbu-
lence on the ensemble-averaged irradiance distribution can be
accounted for by introducing a random phase screen in front
of the transmitting aperture. The appropriate phase distri-
bution is that which would be produced by a point source
located on the target.* This implies that an ideal adaptive
optics system should be able to completely compensate for the
effects of the turbulence by introducing the conjugate phase

distribution as a correction. The degree to which this is
achieved depends on whether the target has a point-glint
scatterer that provides the requisite phase information and
on the degree to which the adaptive optics system can repro-
duce the desired phase distribution. In this section we

shall assume that the target has a point-glint scatterer so
that the ability of the adaptive optics system to compensate
for the turbulence depends solely on its ability to reproduce
the desired phase distribution. This depends largely on the
number of degrees of freedom possessed by the correcting
optics.

To a good approximation, we can represent the finite
spatial bandwidth of the optics by writing the residual phase
error, i.e., the difference between the desired phase distri-

bution and the actual distribution obtained from the optics,
in the form

In this discussion, and in that given in Section 4.1.1, we
assume that amplitude scintillation effects aro small. If
they are not small, the effect of atmospheric turbulence
cannot be represented simply by a phase screen but rather
we must also introduce a random apodization.

+Subject to the assumption that amplitude effects are negli-
gible.
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dx" h(x- x') 4i(x')A,t. (x) = (x) - ' • - ' 4 9

.fdx- h (x _)

with

h(x) = 1, x_ < b

= 0, II > b (4.10)

In this representation the effect of the finite spatial band-
width of the optics is approximated by a spatial averaging
process, i.e., we assume that the phase correction introduced
by the adaptive optics at a point is a uniformly weighted
average of the desired phase correction at all surrounding
points within a circle of radius b. For deformable optics, we
can relate the value of b to the number of mirror actuators
Na by noting that the spatial spectrum of the weighting function
h<X) is [2Jl(Kb)/Kb]2, which has appreciable magnitude only in
the domain Kb "1" 3. More precisely, we have found that good
agreement is obtained between the theory discussed here and the
mirror simulation results discussed later if Kb - 2.72 where
K is the cutoff wavenumber of the mirror. (Note that the
spectrum of the weighting function h is less than .1 for all
Rb 2.72.) Hence, since the Nyquist frequency of a mirror
having actuators separatod by a distance v C is 1/v a' we let

b 2.72 2 - 2.72 (1, 1/2 d (4.11)t, a ,, •4N4

where d is the mirror diameter.
The Struhl ratio obtained in the presence of the residual

phase error A+ defined in Eq. (4.9) is given by Eq. (4.1.) with
the structure function D replaced by
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DA (X (A0 (-X A X)) 2) (4.12)
which in the case of Kolmogorov turbulence with an infinite
outer scale can be written

D4ý (-X7) -6.454 (~)/ k / r ~ I-/ -~

1- 2J •
' -(4.13)

with u _ - _- and r0 given by Eq. (4.2). For a uniformlyilluminated circular aperture of diameter d, the corresponding
expression for the Strehl ratio obtained with adaptive cor-
rection is

SR 1. d cos-I 2 1.21)I/2

with fý given by Eq. (4.5) anz4

8/ "B 3 2-1 _T• z r,

- (4.15)

f ':' -- To dr.t. P. 0 (r,) (4 15

We have evaluated the inteqrai in Eq. (4.14) numeri-cally and have found that# over a wide range of values for theparamet "s i and b/d, it is approximated extremely well by the
result obtained when f(r,b/d) is replaced by its asymptotic
result for b,/dr 1., , which is
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S.145 5/3 (4.. 16)

The corresponding expression for the SR is

SR ex, ) 1-.l45 (1

exp 93 , N-5/6(4. 17)

where we have used the relation between b/d and Na given in

Eq. (4.11). The discrepancy between the approximation in Eq.

(4.17) and the more exact result in Eq. (4.14) is significant

only for very large values of 13 and small values of 14a. This

is illustrated by Fig. 4.3 which shows the results obtained

for a - 35.41 and 177.05. For values of Na greater than 5 the

discrepancy is less than one percent.

To provide a check on the above analytical work, we

have performed two types of mirror simulations. In each, the

effect of a turbulent phase screen placed in front of an

aperture was compensated by a mirror with a finite number of

actuators. The average Strehl ratio obtained from a sequence

of five independent phase screens was determined as a function

of the number of actuators. In one of the simulations the

deformable mirror software described in Section 3. 3 was used

in conjunction with a sinusoidal multidither COAT algorithm of

the type used previously at 1IRL in our COAT servo system
studies.2 In the other simulation the mirror was modeled by

a segmented mirror with piston and tilt control on each segment.

The piston and tilt settings for each segment were determined

by a least squares fit to the random phase surface over the

segmnent. The results obtained from these simulations are

summarized in Pig. 4.4. The agreement between the piston and

tilt results and the theoretical predictions obtained from
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Eqs. (4.14) and (4.17) is very good for all values of E,

which gives us confidence in the theoretical results given in

these equations. We believe that these results are repre-

sentative of those that would be obtained with a deformable

mirror in the absence of the 2NiJ problem discussed below.

The results actually obtained with a deformable mirror will

depend on the degree to which the 2NiT problem is avoided.

The agreement between the theory and the deformable

mirror-multidither COAT ,Imulation results is reasonably good

for moderate values of 6 but is poor for large values of a.

We attribute the poor results obtained at large values of $ to

a 2Nir-type of behavior. The deformable mirror simulation that

was used in these runs has a 2Nii correction loop that introduces

a 21 correction whenever the phase difference between actuators

exceeds four radians. The intent is to suppress 2ir errors

introduced by the servo system. However, if the phase distortion

that is to be removed by the mirror changes by more than four

radians between actuators, the 21 "correction" introduced by
the 2Nr correction loop is, in fact, a 2- error and the

mirror performance is corresponding degraded. This problem

could be avoided by removing the 2Nit correction loop but then
we would be faced with 2Nit servo errors. One way to avoid

this problem is to use more actuators so that the phase

change butwuen actuators never exceeds four radians. Another

way would be to design the mirror so that the likelihood of

2Nm errors is reducod, in which case the 2NvT correction loop

could be eliminated. More work clearly needs to be done on

this problem.

4.1.3 Compensation for Thermal Blooming Phase

Profiles - As a part of our effort to provide an understand-

ing of the reasons for the relatively meager improvement in

beam quality realized with phase conjugate compensation, we

have investigated the nature of the phase distribution of the

return wave in the thermal blooming problem. We have found
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that the phase of the return wave reflected from a qaussian

glint in the target plane does not vary nearly as much as

one would expect based on the type of calculation performed

by Lincoln Laboratory in their optimization studies. 2

Specifically, the phase correction used in the Lincoln

Laboratory work is of the form

Aý YND in(l + N dr, 21  (4.18)

where ND and N. are the distortion and slewing numbers which,

in the notation used in this report, are given by the relations

YO (Y-1) (, P kf
ND -'O v P kf (4.19)

D y 0 P0 0

N - •2f/v 0  (4.20)

Y is the polarizability of the air, y is the ratio of the

specific heats at constant pressure and volume, (i is the

absorption coefficient, P is the average power, k is the

wavenumber, f is the focal distance, v. is the crosswind

volocity, P(, is the ambient atmospheric pressure, i)o is the

e-fulding radius of the laser beam (which we assume to have
a gatissian irradiance distribution), and 2 is the slew rate.

The factor is a constant that the Lincoln Laboratory work

indicates is nearly equal to 1.5 for good phase compensation

under a variety of initial beam conditions.
For a gaussian beam truncated outside a circle of

diameter 3,o the maximum phase excursion predicted by Eq.

(4.18) is
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Max. Phase Excursion - A,;)(,-) - AF (-, )

i ND 1.52
S-.. . kn(l+N1 ) dr. exp(-' 22 N~j.- 11.5
.856 9 ND n~+
. Y N D n(I+N 

(4.21)

and if 9 = 1.5, ND = 21.6, and N(,, = 4, this predicts a maxi-

mum phase excursion of 11.2 radians. In comparison, we have

measured a maximum phase excursion for the field reflected

from a gaussian glint under equivalent conditions (for ND and

N ) to be only about two radtans. We believe that this dis-

crepancy is caused principally by the extended nature of the
target glint, i.e., it is a gaussian glint rather than a point

glints, and that this discrepancy supports our contention that

the disappointingly small amount of correction achieved with

phase conjugate compensation is related to the isoplanatic I4
problem discussed in Section 2.1.

4.2 Phase Compensation for theEffects of Turbulencean hra B' oo'mLi ...ý_J,

An mentioned earlier, we have obtained phase compen-

sation data only for the case in which a phase conjugate control

po].icy is used. Since all return wave adaptive optical systems

use the conjugate phase as a correction (see the discussion

in Section 2.1), the data that wo have obtained apply to all
such systems; e.g., they apply to conventional phase conjugate

systems, to return-wave multidither systems, and to all

systems based on a maximization of the sharpness of an image
of the target.

All of the data were obtained with the time-dependent

propagation code described in Section 3.4. Since we were

58



primarily interested in the correction obtainable under cw
conditions, we attempted to choose pulse repetition frequen-
cies that yield good approximations to the cw blooming condition.
The pulse repetition frequency required to yield conditions
comparable to those existing with cw propagation depends on
the beam diameter, distance to the focus, wind velocity, and
slew rate. Generally, it is necessary to choose a repetition

rate high enough that an air parcel moves only a fraction of
the diffraction-limited beam diameter between pulses. This
condition can be expressed in the form

V +

Pulse Repetition Frequency .> (4.22)

0

where v. is the transverse wind velocity, u is the slew rate,
f is the focal distance, k is the wavenumber and p0 is a
characteristic beam dimension of the transmitted beam (eig.,
the e-folding radius of a gaussian beam).

Figure 4.5 shows a comparison of results obtained

with the time-dependent code and a cw code. In this came
we plot thre Strehl ratio (peak irradiance in the presence of

distortion divided by the peak irradiance obtainable without
distortion) of an untruncated gaussian beam focusuaed at 2 km.
other parameter values applicable to these resultis are an
average power level of 50 kW, a wavelength of 10.6 jbm, an

e-folding radius of 23 cm (90% of the energy of the initial
gaussian beam contained with a 70 cm diameter circle), an
absorption coeffielunt of 2 x 10- cm", a crosswind velocity
v of 10 m/sec, and a slew rate 'a equal to zero. Apparently,
a pulse repetition frequency of 1000 l1z or more is required to
simulate cw propagation under those conditions. This result
is in good agrov.ment with the condition given in Eq. (4.22),

which predicts that v must exceed 682 l1z. As an aside, it
r op

is interesting to note the reduction in the distorting effect
of thermal blooming at the lower repetition froquencioEŽ.

59



I 44

>1

0

I N I

I~~k IHkl

I 0



-I

It becomes increamingly more expensive to simulate cw

conditions as the slew rate increases. The reason for this

can be seen from the data in Fig. 4.5. Note that the number

of pulses required to reach a steady state, be it the cw

state or not, tends to increase linearly with increasing pulse

repetition frequency. But increasing slew rates imply

increasing pulse repetition frequencies, as indicated in Eq.
(4.22). Hence, we must propagate more pulses to reach a
steady state as n increases. In our calculations we have

used the largest pulse repetition frequency consistent with

the dual requirements that we simulate the ow state and yet

do not require an excessive number of pulses. Typically, we

have used no more than 20 pulses for a given simulation. At
high slew ratem, this has resulted in some departure of the

multipulse of results from those that would be obtained from

a cw code. Principally, the difference is that for a given

average power the multipulse results tend to yield Strehl

ratios that are 30 to 40; higher than those obtained from a
cw code. The same type of power optimization curves are
obtained except that tha peak irradiance and the transmitter
power required to yield the peak are higher (see Fig. 4.6
for example). This discrepancy between the multipulse and
cw results is not important in our studies because the main

goal of these studies is to ascertain the efficacy of

adaptive optics as n technique for increasing the magnitude

of the peak irradiance at the target, not to establish the

preciso power level at which that peak occurs.

In order to determine the relative amount of correction
to be expected for turbulence and thermal blooming effects,

we have made runs in wnich one or the other ot these uffects

was absent. In addition, we have obtained data for adaptive

componsation of the combined effects of turbulence and

thermal blooming. In all of these calculations we have used

a phase conjugate correction algorithm in which the transmitter
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phase was equated on a mesh-point-by-mesh-point basis to the

negative of the phase returned from the target. The target

was represented by a single gaussian glint having an e-folding

width equal to 4 cm. The results obtained for propagation at

a CO2 laser wavelength of 10.6 pm are discussed in Section

4.2.1 and those obtained for propagation at a DF laser wave-

length of 3.8 Pm are discussed in Section 4.2.2. In these

calculations the absorption voefficient was assumed equal to

2 , 10- 6 cm- 1 at 10.6 Pm and 4 x 10-7 cm" 1 at 3.8 rim.

4.2.1 Phase Conjugate Compensation at 10.6 pm - One

of the more interesting results from these studies is the

observation that much better thermal blooming compensation

is obtained with untruncated gaussian beams than with trun-

cated gaussian beams. An example of the results obtained with

un untruncated gaussian beam is shown in Fig. 4.7, which

applies to the propagation of a beam having an e-folding radius

of 23 cm (90% of the energy in the initial irradiance distri-

bution is contained within a circle having a 70 cm diameter),

a slew rate of 20 mrad/sec, a focal distance of 2 km, and2
an index structure constant CN - 0 (i.e., no turbulence).

Phase conjugate compensation increases the peak irradiance

by a factor of 2.3 and the transmitter power at which the

peak occurs is increased by a factor of two. For comparison,

the results obtained for a gaussian beam truncated at a beam

radius of 35 cm, with all other beam and scenazio parameters

identirai to those discussed above, are shown in Fig. 4.8.

In this case, phase conjugate compensation increases the

peak izradiance only by about 30%. We believe that the

difference in phase compensation achieved with and without

beam truncation can be explained by the is~planatic problem

discussed in Section 2.1. As shown in Fig. 4.9, the fields

within the circle of beam trunication returned from points

within the domain of an extended glint, such as the gaussian

glint used in our numerical studies, pass through air that
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has much larger density gradients than the fields returned

outside of the circle of beam truncation. ihence, the

distortinq effect that a finite glint has on the phase oif the

return wave is less severe outside of the region of truncation

than it is within this region and, therefore, better compen-

sation should be obtained with infinite beams than with

truncated. In fact, it appears that for the infinite beam

case shown in Fig. 4.7 almost all of the factor of 2.3

increase in target irradiance is obtained from fields outside

of a 70 cm diameter circle.

Results for phase conjugate compensation of the

combined effects of turbulence and thermal blooming are shown
in Figs. 4.10, 4.11 and 4.12. All of these results apply

to truncated gausplan beams propagated through a single

realization of a random medium; i.e. , no ensemble-averaging

over different random medium realizations was done. Generally,

these results, and others that we have obtained, indicate

that phase conjugate compensation yields good compensation

for the effects of turbulence but very little for the effects

of thermal blooming. Fortunately, the ability to compensate

for the effocts of turbulence is apparently not degraded by

the presence of thermal blooming effects even though phase

conjugate compensation is not very effective as a thermal

blooming compensation technique. Thu not improvement in beam

quality obtaincd with phasei conjugate compensation is most

impressive for the conditions depicted in Pig. 4.12 which

applies to a 1.2 in beani propagatud through moderately strong

turbulence having an Index structure constant of 6 x 10-1

cm" 2 /3. This is to be UxpLtCf-.d, of course, since turbulence

effects are most pronounced in the case :of larqo beams and

high turbulence levels.
The severity of tlhe thermal blooming problem for cw

propagation at 10.6 iin has engendered a considerable amount

of interest recently in multipulse propagation in which the

time between pulses is sufficient to allow the local cross-

wind velocity to convect partially the heated air from the
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reg ion occupied by the beam. This is i favorablo situ t-ion

for thernmal blooming compensation because the blooming under

these conditions tends to occur closer to the transmitter

and is, therefore, more nearly a pure phase effect which can

be corrected by a compensating phase distribution on the

transmitted wave. Moreover, the deleterious effects of the

isoplanatic problem discussed in Section 2.1 are greatly

alleviated so that we should obtain significantly better

phase compensation results in the multipulse mode than we have

for cw propagation. This is illustrated by the results shown

in Fig. 4.13. These results apply to phase conjugate compen-

sation for the residual effects of thermal blooming on the

propagation of 12 kJ pulses of 10.6 om energy radiated in a

truncated gaussian beam having a diamster of 70 cm and an

e-foldinq radius of 23 cm (90% of the energy in the gaussian

contained within a circle having a 70 cm diameter). The

crosswind velocity is 10 m/sec and the beam is being slewed

at 20 mrad/suc. The results are plotted as a function of

averaqe power, which is related to the pulse repetition rate

"rep by

1AV Z "rep Epulse (4.23)

The oefect of thermal blooming within a pulse is neglected

in this calculation. This should be relatively small for

short pulse lenyLts. For the conditions pertaining to the

results in Fig. 4.13, the minimum pulse length consistent with

having a peak irradlance below the sea level air breakdown

threshold of 107 watts/cm2 Is 10 isec. (This assumes that

the Strehl ratio is not degraded by thermal blooming effects.)

The significant increase in target irradiance obtained with

phase compensation verifies that multipulse propagation is

a very favorable mode of operation for phase c,)mplnnsation.
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4.2.2 Phase Con ipt !_mpnsation at 3.8 i' -- The

phase conjugatu, curreution results obtained at 3.8 uim are
consistent with those obtained at 10.6 jim in that we have

observed that significant correction is achieved for turbu-

lence effects but that very little correction is realized

for thermal blooming. The impressive amount of correction

achievable for turbulence effects in the absence of thcrmal
blooming is illustrated by the Strohl ratio results given

in Figs. 4.14 and 4.15 which apply to a case in which the
-15 -2/3index structure constant in 10 cm The results in

Fig. 4.14 pertain to a gaussian beam with an e-folding radius

)f 13.8 cm (90% of the energy in the initial irradiance
distribution is contained within a circle having a 40 cm

diameter) truncated outside a 70 cm diameter circle. The

path length is 2 km and the slew rate Is 20 mrad/sec. The

results in Fig. 4.15 apply to a gaussian boam with an e-folding

radius of 40 cm (90% of the energy in the initial irradiance

distribution is contained within a circle having a 1.2 m

diameter) truncated outside a 1.2 m circle. The path length

in this case is 4 km and the slew rate is 5 mrad/sec. In
both cases the Strehl radio obtained with correction eventually

ottains a value within 10 to 20% of the free-cspace value.

Althuugh the results in Fig. 4.15 exhibit a rather slow
increase in Strehl ratio with successive pulses until the

twelfth pulse, we believe that an actual phase conjugate

syvtem would increase the Strehl ratio much faster. The
slow build-up seen in Fig. 4.15 is probably caused by the

fact: that wu did not iterate the correction process at each

step; rather, a single phase measurement was made based on

the teturn of a single reference pulse propagated just prior

to the high power pulse. The single pulse teference is adequate

when the beam is in a nearly converqed state, as it is later

on in the pulse train, but does not give an accurate phase

estimate early in the pulse sequence. Early in the pulse
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train the return comes from a more extended portion of the

target because of the broadness of the transmitted beam and
the very significant fluctuation in the amplitude of that
beam in the target plane.

Results for phase conjugate correction of the combined

effects of turbulence and thermal blooming aru shown in Figs.
4.16 and 4.17. The results in Fig. 4.16 apply to a truncated

gaussian beam with an e-folding radius of 23 cm and a trun-
cation circle diameter of 70 cm, This beam is being slewed at

20 mrad/sec. The results in Fig. 4.17 pertain to a truncated

gaussian beam with an a-folding radius of 40 cm and a trun-

cation circle diameter of 1.2 m (same degree of truncation as
the 70 cm beam used in Fig. 21). This beam is being slowed

at only 5 mrad/sec. In addition to dumonstrating the ability
of phase conjugate adaptive systems to achieve substantial

corrections for the effects of turbulence, these results

illustrate the advantage of using large beams in thermal
blooming situations. Even though the slew rate in Fig. 4.17

is four times slower than that in Fig. 4.16, the peak
irradiance obtained without correction is increased by a

factor of five. Likewise, the peak irradiance obtained in
Ficl. 4.17 with phase conjugate correction is increased by a
factor of three beyond the comparable result obtained in

Fig. 4.16. This improvement in peak irradiance can be

attributed to The increasrd siZe of the beam used in Fig.

4.17 (1.2 in optics versus 70 cm optics).
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Tho most important conclusion that we have reached on

the basis of the work done on this contract is that adaptive

optical systems employing any of the various types of return-

wave control algorithms are not likely to yield very singi-

ficant compensation for the effects of cw thermal blooming

unless the target scattering occurs over regions having

extent considezably smaller than the diffraction-limited beam

size. As a matter of fact, some of the data we have obtained

indicate that under some conditions such adaptive systems
may actually decrease target irradiance instead of increasing
it. The analysin in Section 2.1 of this report indicates that

the problem with the return-wave control algorithm originates
from the fact that it inherently tends to use the conjugate

of the phase of the field returned from the target as the

phase correction. This phase conjugate control policy works

well as long as the target acts as a point scatterer or a

discrete collection of such scatterers. However, if the
scattering originates from extended scatterers rather than
point scatterers, there is an isoplanatic-type of effect

wherein the return phase becomes garbled by the interference

between returns from the various parts of the scatterer.

This isoplanatic effect is of no consequence for most turbu-

lence compensation situations since the isoplanatic area is

usually larger than the principal scattering region. Hence,

return-wave systems yield good compensation for turbulance

effecth. For cw thermal blooming, however, our computer

resultr indicate that the isoplanatic region is smaller than

the diffraction-limited spot size. We baso this conclusion

on the fact that very little compensation was obtained for

cw thermal blooming effects with glints having an extent

approximately equal to the diffraction-limited spot size.
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It should be noted that the above conclusions apply

to dny adaptive optical system employing a return wave-type

of control algorithm, not just the explicit phase conjugate-

type of system. As discussed in Section li, this includes

systems that operate by maximizing some functional of the

irradiance distribution obtained by imaging the targetj e.g.,

maximization of the energy through a pinhole for a point

glint target or maximizing the "sharpness" of an image of an

extended target.
With regard to turbulence compensation, we have found

that return-wave adaptive optical systems yield significant

corrections. Typically, it is possible to obtain almost
diffraction-limited target intensities even for relatively
strong turbulenc,.. The amount of improvement is particularly

impressive at 3.8 pm where the turbulence degradation is quite

severe without adaptive compensationj e.g., we have obtained

a factcr of seven increase in peak tarqet irradiance for a

70 cm diameter, 3.8 pjm beam propagated over a 4 km path having

a turbulence level equivalent to an index structure constant
o1 '0"5 cm2/ 3 (moderate turbulence on a low altitudeof C N 10 c

path).

In the results discussed above, and in all the other

results in which the full propagation simulation was used,

we have not simulated the effect of having fewer mirror

actuators than mesh points. We have simply equated the phase

correction to the conjugate of the return wave on a mesh-

point-by-mesh-point basis. However, we have obtained quanti-

tative estimates of the degrading effect of having fewer

actuators than mesh points from both theoretical analysis

and a simplified computer simulation in which the effect of

turbulence was reprusented by a single phase screen placed

"in front of the transmitter (sev Section 4.2 for details).

Using the theory developod in Section 4.2.2, which yields

results that agrue well with the computer stmulation results,
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we obtain the following condition on the number of actuators

per unit area of mirror surface required to yield a Strehl

ratio of .9 or greater (i.e., the degradation in Strehl ratio

due to the finite number of mirror actuators is < .10)

Number of Actuators 2 2 6/5
Required per Unit .529(k C Z) (5.1)
Area

We estimate, for example, that approximately .037

actuators per cm2 of primary mirror area are required to

yield results comparable to the mesh-point-by-mesh-point

results for the 3.8 urm case cited above, i.e., approximately

143 actuators are requirnd for 70 cm optics.

In the case of multipulse propagation, we have found

that adaptive optical systems employing return wave-type of

control algorithms can significantly increase the target

irradiance in thermal blooming situations. The amount of

correction attained varies depending on the conditions but

can approach a factor of three in some cases. The reason for

the significantly better correction obtainod for multiple

pulse thermal blooming offects is principally that the distort-

ing effect of the thermal blonming tends to move back away

from the target and closer to the transmitter. This hns the

effect of increasing the isoplanatic area at the target. and

thus alleviat.(s the problem that occuLrs with cw thermal

blooming.

Although we have not. yet obtained (omputer simulation

results for an adaptive optical uysi-em employing anl outgoing-

wave multidither control algorithm, we have developed an

approach to the problem. This approach is a modified version

of what has butin done at Li ncoln l1ahoratury by Ilerrmalrn and

Brad I ey. Since an outcgoilnq-wavti multidcithor con trol algorithm

is basically a maximi,,tation [rouon s, it can be repiresented

by a function maximization routinc. Inr contrast to the
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Lincoln Laboratory work in which the target irradiance was
directly maximized with respect to the phase correction, we

recommend a simulation which more closely models the operation

of an actual adaptive optical system. To accomplish this, we
would use a time-dependent propagation code and would maximize

the integrated irradiance of the field returned to the trans-

mitter from the target. There are two principal differences

between this approach and that taken by Lincoln Laboratory.
First, we would maximize the integrated irradiance of the field

returned from the target rather than the target irradiance

lirectly. This will allow us to determine the sensitivity of

the maximization process to the size of the receiver and the

nature of the target glint. Secondly, use of the time-
dependent code will allow us to determine whether the
instantaneous maximum provided by an outgoing-wave multi-

dither algorithm yields a long-term global maximum irradiance

at the target or instead simply yields a secondary maximum.

Put in another way, we would be able to determine whether

it is possible to end up at a local (secondary) maximum

rather than the global maximum when we instantaneously maxl-

mize the integrated irradiance of the return fieldl i.e.,

could we have reached a higher maximum l-a6 we taken a

different path In time (via a different control polic¢y)?

5.2 Recomrnnend at!ion a

Dividing the subjects aqloin on the basis ,I, t he, type

of control al-urithm usod, we recommend the following addi-

tional work on the adaptive optics simulation prijblernt

Return Wave Systems - Generally, uoit, data are needed

for a broader 3et of systom, atmospheric, and tarqet para-

meters than hiive becn investigated to t.him dat e . These
parameters incl Iude.. the mirror diamuter, type o• mirror

(segmented otr duformablo) , number of aut.uators, initia1
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irradliance distribution (including Jistributions typical of

actual high power lasers), target range and slew rate, and
target glint size. Of particular importance in the cw

thermal blooming problem is the investigation of the degree
of compensation achievable as a function of target glint size.

These results should be correlated with known properties of
real targets in order to arrive at an authoritative assess-

mont of the offect3 of target glint size on return-wave

systems.

Outgoig-Wave Multidither Systems - As indicated

earlier, we tecommend that such systems be simulated by a

function maximization routine in conjunction with a time-
dependent propagation code. Initially, at least, the main
intent of such a simulation should be to establish whether

an outgoing-wave multidither system yields a truly global

maximization for the irradiance at the target or instead
yields simply a secondary maximum. The effect of target

glint size and receiver size on the maximization process will

be of particular interest in these studies. Other parameters

that should be varied are mirror diameter, type of mirror,

number of actuators, initial irradianco distribution, and
target range and slew rate.
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APPENDIX A

RECIPROCITY CONSIDERATIONS

The equivalence of the transmitting and receiving

patterns of an antenna is a consequence of a general reci-

procity relation satisfied by the solution of the Maxwell
equations. For the propagation problems of concern in this

report, the solution of the Maxwell equations can be derived

from the solution of a reduced wave equation. The desired

reciprocity relation is obtained by considering the case where

there is a delta source located at one of two points xi
(i - 1,2) within a volume V bounded by a surface S

+ k2  n2 (X.)I u i(x) - '(x - i,(A.1)

We assume that the refractive indux distribution within V

and the boundary conditions on S are independent of the location

of the source. If we multiply the equation for u1 (x) by u 2 (x)
and that for u 2 (x) by u1 (x), subtract thv results, and inte-

grate over V, we obtain

( ds ( 2 .n I -, u 2 (x l ) - u 1 (x 2 ) (A , )

The surface intcqral is obtained by applyinq Greoon's theorem
to the volume inteqral Of U2 ," uI - uI 1.u2 .

For a wide range of problems, including those of

interist in this report, we can approximate the boundary

conditions on S by the impedance boundary condition

• , 0, x on S (A.3)

where i is a constant that depends on the surface impedanco
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I4

of the boundary. Hence, the surface integral in Eq. (A.2)
is zero and we obtain the following reciprocity relation

u1 ( - u2  (A.4)

This relation states that the field produced at x2 by a source
at is the same as the field produced at xI by a source at
x 2 We note that the derivation of Eq. (A.4) did not require
any assumptions regarding the nature of the refractive index
function n(x) in Eq. (A.1). Hence, the reciprocity relation
we have derived is valid regardless of the state of homo-
geneity of the medium between a, and x2.

To prove the equivalence of the transmitting and
receiving patterns of an antenna immersed in an inhomoqeneous
medium, we need now merely consider the situation shown in
Fig. A.I. The antenna is depicted here as a lens. According

to the reciprocity relation given in Eq. (A.4), the field
radiated to the point xa from a point source at x 1 behind the
lens is equal to the field received at x, from a point source

at x2. This implies that the transmi. 'Ing and receiving
pattern@ of the lens are the same because, as shown in Fig.

A.1, the field at Xl in the receiving case bears the same
qeometrical relationship to the center of the receiving
pattern (indicated by the dashed lines in Fig. A.1), as does
the field at x2 to the center of the transmitted pattern

(indicated by the double-dashed line in Fig. A.U).

As a corollary to the equivalence between the trans-
mitting and receiving patterns of an antenna, we note that if
one images a point source located at x2, the point of maximum
irradiance in the image plane is the ideal place to locate
a point source if it is desired to deliver maximum power to
X. on transmit. To prove this, we recall from Eq. (A.4)

that the field at x2 radiated by a source at x is the same
as that which occurs when the source and observation points
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are interchanged. Hence, the fact that we locate the point

source at the point of maximum irradiance from the source at

!2 implies that the field radiated to !2 will be maximized
because the transmitting and receiving patterns of the

antenna are equivalent and a point source located at the

miximum of one pattern will likewise produce at maximum at

the reciprocal point. Basically, we are saying that maximum

power is delivered to x2 when the transmitter is pointed at the

apparent position of !2' This result has wide application in

communication and radar systems where it is often necessary

to deliver energy to a point specified by an imaging system.

In addition to the equivalence between the transmitting

and recuiving patterns of an antenna and the pointing corol-

lary discussed above, the reciprocity relation given in Eq.

(A.4) has the obvious consequence that the fluctuations of a

spherical wave propagating in a random medium are reciprocal

regardless of whether the random inhomogeneities are spatially

homogeneous. By reciprocal we mean that the fluctuations at

a point x2 in the field radiated from a spherical wave source

at a point x, are the same as those observed at x, when the

spherica.), source is at x,. This means, for instance, that

mirthbound measurements of the fluctuations of a spherical wave

(manatini from a point ivourcu uutside the varth's atmosphere

can b, uscd t(o predict tho fluctuations that. would occur In

the reciprocal situ&tion; riamely, tln .,art.hbound point source

radiat nq to the same point in space.

Unfortunately, tho rociprocal relation bLetween the

fluctuations of the spherical wave fields in random media

generally does not apply to the fluctuations of fields radiated

by more complicated source. Por o•tample, consider the source-

medium configuration shown in Figs. A.4a and b. The source

in this figure is composed of a point source, lens combination,

which is generically equivalent to inost laser source. With

this type of source we change the location of the Lens when
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the source and observation points are interchanged. In
affect, this means that the refractive index function n(x)

in Eq. (A.1) is not the same when the !source" is at !S1
as it is when the "source" is at x2. Consequently, the terms

involving the refractive index do not completely cancel when

we follow the procedure outlined earlier for the derivation

of the reciprocity relation. given in Eq. (A.4). There is an
additional term in Eqs. (A.2) and (A.4) that destroys the
simple reciprocal relationship that exists for point source

fields.
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